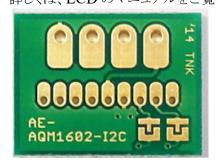
X-VFO-PICO-Type2 AD9953 AD9954 接続時

1. 接続

※空欄は使用しません。

/•\						
1	AD9953/4の IOUPDATA 端子へ	40	VBUS (USB 5V 電源)			
2	AD9053/4の SCLK 端子へ	39	VSYS (電源入力 1.8V~5.5V)			
3	GND	38	GND			
4	AD9953/4 の SDIO 端子へ	37				
5	AD9953/4 の リセット端子へ(必要な場合)	36	3.3V 出力 (LCDとSi5351~)			
6	I2C SDA (LCD ≿ Si5351 ∼)	35				
7	I2C SCL (LCD ≿ Si5351 ∼)	34	エンコーダ B 相			
8	GND	33	GND			
9		32	エンコーダ A 相			
10		31	S6			
11		30	リセット GND に接続でリセット			
12		29	S5			
13	GND	28	GND			
14		27	S4			
15		26	S3			
16		25	S2			
17		24	S1			
18	GND	23	GND			
19		22				
20	S7	21	AD9953/4 選択			

外部電源を使用する場合は、39ピンへ接続してください。 S1~S6はプッシュスイッチです。(押してON、離すとOFF)


Si5351 を使用する場合 21ピン オープン

AD9953/4 を使用する場合 21 ピン GND

AD9953/4 の動作クロック 400MHz

2. LCD のジャンパー設定(**重要**)

秋月電子のLCD 基板にある、ジャンパーパッドを両方とも必ずショートしてください。(はんだ付け) これによって、I2C の通信ラインのプルアップ抵抗が ON になります。 詳しくは、LCD のマニュアルをご覧ください。

3. LCD 画面の説明

R	SW4の操作によって、RとTが切り替わります。
+	RIT ر
上段(100.000.000)	発振周波数
下段(000.000.000)	RITの移動量
右上 (50)	AD9953 の出力レベル 0~100% 100%は MX と表示
左下 (00)	チャンネル番号

4. ボタン操作

左へカーソル移動
右へカーソル移動
入力フィールド移動 周波数、RIT、チャンネル、レベルの各項目を、順番に移動します。
RIT の ON/OFF RIT のが ON になると、RIT 周波数の左側に"*"マークが付きます。 ON の場合、発振周波数に RIT の値が加算 (一ならば減算) されます。
S7が押されている間は、送信となり、周波数の左側が"R"から"T"に変わります。 ※送信時はRITの値は無視されます。
チャンネル ライト 周波数、RIT、オフセット、レベルなどの情報を、チャンネルに記憶します。 あらかじめ、チャンネル番号を、設定したいチャンネルに変更しておいてください。 値がライトされたチャンネルには、左側に"*"マークが付きます。 ※チャンネル 0 番が設定されている場合は、起動時に 0 番の値でスタートします。
0 クリア カーソルがある入力フィードを、Oにします。
チャンネル コール 現在のチャンネル番号の情報を読み出します。
エンコーダ ロック エンコーダを回しても、反応しなくなります。
AD9953/4 に入力される基準クロックお設定します。
AD9953/4 のクロック逓倍の倍数 4~20 倍を設定します。

5. 初期化

S6を押したまま、電源 ON を行うと、フラッシュメモリに記憶されているデータが初期化されます。 LCD に"INIT OK"と表示されるまで、S6を押し続けます。 チャンネルデータ、オフセットなどは、初期値(0)になります。

6. 発振モジュールを変更した場合も初期化が必要(重要**)** Si5351、AD9953、AD9954を変更した場合も、初期化を行ってください。

7. 表示設定(オフセット 逓倍)

設定に使用する数値は、RIT の値が使用されます。 そのため、あらかじめ RIT に S3 で移動し、数値を設定しておいてください。

通常、なにも設定しない初期状態では、表示周波数と発振周波数は一致しています。 オフセット、逓倍の設定することで、発振周波数と表示の関係を変えることができます。

表示周波数=発振周波数 * 逓倍 + オフセット

発振周波数 : 実際に出力される周波数 逓倍 : 外部で逓倍する場合の倍率オフセット : 表示オフセット

例えば、逓倍が3倍、オフセットが10MHzの場合、発振周波数が100MHzならば 100 * 3 + 10 = 310 MHzが LCD の上段に表示されます。

RIT に値を設定してから、各ボタンを押します。

86 + 83 + 81	オフセット設定
S6 + S3 + S2	逓倍設定

設定には、RIT に設定した値が使われます。

(例)

RIT = 10MHz

に設定した状態で、S6+S3+S1 を押すと、オフセットが 10MHz にセットされます。

8. AD9953/4 への供給クロック周波数と逓倍の設定 設定に使用する数値は、RIT の値が使用されます。

そのため、あらかじめ RIT にS3 で移動し、数値を設定しておいてください。

供給クロックは自由な値を使用できます。 1Hz 以上の値を入れてください。

AD9953/4 は内部でクロックを PLL にて逓倍しています。

逓倍の値は4~20倍が設定可能です。

4以下を設定した場合は、1倍になります。

20以上を設定した場合は、20倍になります。

S1+S2+S4	供給クロックの設定
S1+S3+S4	PLL の逓倍数 4~20 (4以下は1になります。)